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Abstract 

A robust adaptive control strategy for a class of continuous-flow bioreactor process where the intrinsic reaction rates are poorly know is 
provided. A numerical observer is used to obtain on-line discrete estimates of the main uncertaiclties {kinetics term, yield production, and 
biomass concentration) of a continuums bioreactor With this estimate, a linearizing feedback control law is obtained which provides robust 
regulation against uncertainties, disturbances and additive noise on the substrate concentration measurements. The performance of the closed- 
loop system is illustrated via numerical simulations. 0 1998 Elsevier Science S.A. All rights reserved. 
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1. Introduction 

Optimization of continuous-flow bioreac tom can be gen- 
erally achieved by ~a~~~~~ing the process outputs close to 
their desired values over a time interval of interest. In partic- 
ular, during the course of the process the cell and substrate 
concentrations are to be close to prespecifizd steady-states, 
and the latter are choosing to optimize certain performance 
criteria. Their co~esponding control problem commonly con- 
sists of two stages. In the first stage, the process that starts 
from some initial state is to be brought close to the desired 
steady-state, while in the second stage, the objective is to 
maintain the process outputs close to their desired values over 
large time intervals. Such a problem is rende:red complex due 
to the hig111y non1i~ear nature of the process. and since the 
control objective is to be achieved in the presence of param- 
eter time variations and substantial unmodell~ddynamics. The 
later effects generally tend to deteriorate thz performance of 
the process in a direction of a lower productivity. 

A major difficulty in the monitoring and control ofbiopro- 
cesses is the Iaek of reliable and simple sensors for following 
the evolution of the main state variables and parameters such 
as biomass, product and growth rate. This absence of direct 
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on-line measurements devices has lead to the development 
of elemental balancing techniques, to provide on-line esti- 
mates of state variables. Excellent reviews of these estimation 
techniques are- provided in Ref. [ J 1. 

The first attempts to estimate unknown variables related to 
the continuous bioreactor involved macroscopic component 
balances. While this may be accurate for a steady-state esti- 
mation, this is not the case of the yield coefficient, which 
varies during transient growth period [ 21. 

In order to extend this approach for the transient period, 
an instantaneous discrete algorithm has been proposed 131. 
This technique is based on a mass balance to estimate the 
uncertainty terms supposing that the substrate concentration 
is available for discrete measurement. Aguilar et al. [ 3] pro- 
vided a stability proof of the closed-loop system. However, 
the approach mentioned above becomes unstable when meas- 
urements are noisy, 

In this work, we follow the basic ideas presented in a 
previous work to design controller with un~e~ainty compen- 
sation. To reduce adverse effects caused by noisy measure- 
ments, we propose an on-line estimation strategy for the 
unknown kinetic terms through a relatively new class of 
observers which are based on the solution of a set of algebraic 
equations that represents the mismatch between the output 
dynamics and a reference dynamical system. With this esti- 
mate and the methodology proposed by Isidori [4], a line- 
arizing feedback control law was designed that is robust in 
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the presence of uncertainties and disturbances in the process 
model and noisy measurements. As in the control design 
proposed in Ref. [ 31, our method is restricted to a particular 
class of model structures in which uncertainty appears as an 
additive uncertainty. 

2. Process model 

An important goal of controlling continuous bioreactors is 
to achieve and maintain a desired steady,-state operating point. 
The characteristics of the steady-state and the dynamic behav- 
ior of the given process are important considerations when 
designing a control scheme to effectively regulate a system. 
The analysis of the process begins with the development of 
a mathematical model approximating the behavior of the 
process. The bioreactors are generally modeled as continuous 
stirred tank reactors (CSTR). The dynamic behavior of these 
processes is highly nonlinear and can originate multiplicity 
of steady-states or self-sustained oscillations [ 5-71. 

It is common with bioreactors to develop models using a 
set of ordinary differential equations. For a constant-volume 
vessel with a pure culture feed with a sterile flow, mass 
balances for biomass (cell) and limiting substrate concentra- 
tions lead to the following equations. 

x= -Dx+p(s)x (1) 

S=D(S,-S) - (lIY,)I.L(S)X (2) 

where D is the dilution rate, Y, is the yield coefficient and 
p(S) is the specific grow rate. 

Despite some objections to the Monad equation, this one 
and variations thereon are probably the most widely used 
models of microbial growth, primarily because they are sim- 
ple and mathematically tractable. Through steady-state anal- 
ysis, several researches conclude that nontrivial multiplicity 
and oscillatory phenomena were not possible for a constant 
yield. 

Using an experimental continuous bioreactor, Dibiaso et 
al. [ 61 verify the existence of multiple steady-states. Using 
proportional feedback control, an unstable steady-state was 
maintained by manipulating the dilution rate. After reaching 
the steady-state, the control loop was c’pened and the system 
settled to a new steady-state, demonstrating the multiplicity. 

Suppose that the specific growth ran: is given by Monod’s 
model, and the yield coefficient varies according to Crooke 
etal. [5]: 

Yd = 0.01 + 0.03s (3) 

0.3s 
CL(S) = 

1.75+s 
(4) 

for D=O.14 hh’ and Sr=35.0 g lP’, Tsao and Wu [8] 
reported that the open-loop reactor pres,ents two steady-states 
and a limit cycle which is present at the nonwash-out steady- 
state of the reactor (X = 1.872, S = 1.5:3 1) . 

3. Numerical uncertainty observer algorithm 

When it is desired to design a feedback linearizing control 
law for a nonlinear system, it is well known that model uncer- 
tainties produce a closed-loop behavior which has a poor 
performance or even instability [9]. In order to use this 
approach. it is necessary to get an estimate of the uncertain- 
ties. The closer this estimate is to the real value, the better is 
the performance of the resulting controller. 

Let Q!J( St) = p( S)X( t) /Y, represents the uncertainty asso- 
ciated with the substrate dynamics. Then Eq. (2) can be 
rewritten as: 

s=D(S,-S) -i,b(S,r) 

In general, I,!J( St) has the following properties: 

(5) 

(a) $(S,t) is continuous and differentiable over the whole 
range of interest. 
(b) @(St) E [ &,i,, I&,,,,] for all positive S, t. 

Let us construct the following auxiliary dynamical system 

s=D(S,-j) -9 (6) 

When the solutions of the systems (5) and (6) are the same 
for all time after some time t* > 0 (i.e., S(t) + S( t) as 
t + t* > O), then $0 is an estimate of I,/I. In order to estimate 
uncertainties, it is not necessary that S( 0) = S( 0). However, 
since substrate concentration is assumed to be measured, the 
initial condition S( 0) = S(0) is a reasonable assumption. If 
: = S - S represents the mismatch between systems (5) and 
(6)) then the dynamics associated with v is governed by: 

j=.f(y,&t) = *- 3 (7) 

The aim of the observation algorithm is to design a meth- 
odology such that tJ can drive the system (7) to a desired 
target value yd = 0. The structure of the observer is based on 
the methodology proposed by Ostojic [ 101. If the tracking 
error is defined as e =yd -v, we consider the problem of 
finding a relationship for $ which will bring the tracking error 
to zero. Moreover, it is desired a relationship that force the 
error to exhibit an asymptotically stable linear dynamics 

Cfce=O (8) 

where c > 0 is a design parameter. Let us define the following 
manifold 

5=6+ce 

which can be rewritten as 

(9) 

u=jd-f(yrlp,t) fee (10) 

Eq. ( 10) shows that (+ depends on IJ explicitly and then 
indicates that one can find a relationship that leads to the 
desired behavior (Eq. (9)), simply by solving u =0 for $. 
Then, the solution to the uncertainty estimation problem can 
be reduced to finding a solution tJ( t) of the nonstationary 
equation 

u(S(t),t) =o (11) 
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There are two ways to find a solution of Eq. ( 11). The first 
one is an analytical methodology. This approach starts from 
the assumption of a whole knowledge of the relationship 
given by Eq. (7). As this equation contains the uncertain 
term $J, this approach can not be used. The alternative 
approach is to implement a numerical solution of Eq. ( 11) 
through standard nonlinear finding roots methodologies. This 
work is employed with this approach, using a SuccessiL:e 
Substitutions Algorithm, whose structure is similar to a dis- 
crete finite-difference observer [ 31. Considering the prop- 
erties of $( S,t) mentioned above, one can use the results on 
convergence for fixed point iterative method01 ogies, and this 
gives the way for solving Eq. ( 11). 

Theorem 1 [ lo] Let q(t) = F( t&t) be a real nonstation- 
ary equation with an exact solution I,!I*( t). Let $( t,, ,) = 
F( +( tk),tk), with $J( to) known, be the resulting recursive 
formula to compute estimates of +* (t) at instants tk = to + hk, 
where h is a constant and k= 1, 2, . . . . k,. Then, in order the 
estimation error &( tk) = I,!J( tk) - I/J* ( tJ be bounded for all k, 
it is sufficient that 
1. Both F( t&t) and G*(t) are continuously differentiable, 

and 
2. There exists a constant M such that the condition 

au !lJJ) 
I I 
- <M<l 

atCI 

holds in a region containing t,!~( to), $( t, ) and 9” (f) for all 
t E [to: to + hk,] The estimation error is bounded by: 

l-Mk 
Is(t,J 1 sMk14to) 1 +hN- 

1 -M’ 
where k= 1, 2, . . . . k, 

N= sup 
w cClJ) aF( 42t) p++*(t)--- 

at a* ’ 
t E [to, to t- hk,] . 

The proof of the above theorem can be .‘ound in Ref. 
[ lo]. To use the result of Theorem 1 

a( $(t) ,t) = 0 into an equivalent form: 

ccI( t) = F( @J) 

, one can rewrite 

Then c?(fk+l) =F(5/(tk),tk), 51(tktl) E [ 
the recursive estimation law for Eq. (7) 

(12) 

tim,nr (clmaxl defines 

The transformation of Eq. ( 11) to Eq. ( 12) is not unique. 
In this work, the successive substitution method is used, 
where F( At) = t$+ ha( t&t) and A is a (relaution) fixed 
parameter. With these definitions, the recursive estimation 
law for Eq. (7) can be rewritten as 

9(h+,) =$(td +WQ(td, t/J (13) 

In applications, a( $( tk),tk) is calculated using Eq. (9) 
rather than Eq. ( 10). Thus, the estimator (Eq. ( 13)) does 
not require explicit knowledge of plant parameters. The struc- 
ture of the system (9) is needed only to determine bounds 
on the parameter A, but is not necessary to calculate the 

estimate $G( t). The parameter A is chosen in such a way that 
iteration (Eq. ( 13) ) becomes convergent. From Theorem 1, 
it is easy to verify that the condition for r,G( t) to be an asymp- 
totic observer of $(t) is 

From Eq. (7), we obtain: 

-2<h<O (14) 

It is important to point out that in order to satisfy the 
conditions for Theorem 1, if the resulting uncertainty estimate 
obtained from Eq. ( 14) is lower than @*in, then $( tk) is taken 
as lclmin. In the opposite case, if the resulting uncertainty esti- 
mate obtained from Eq. ( 14) is larger than $I~,,, then @( tk) 
is taken as (CCnBX. As in the strategy proposed by JShalil [9], 
the bounds &ninr &,,, in $Q(tJ reduces the adverse effects 
introduced by the nonlinear peaking phenomenon [ 111. 

4. The nonideal control strategy 

The objective of this work is to design a control law for D 
in such a way that the dynamics of S can be driven to a desired 
trajectory given by sef( 1). If Sef( t) has a constant value, the 
control problem becomes a regulation problem. 

Suppose the dynamical behavior of S is given by Eq. (5)) 
then the linearizing control law that imposes a first-order 
behavior to S is the following equation: 

(15) 

If k is chosen such that k < 0, then Eq. ( 15) drives S asymp- 
totically to Se’. However, as @is unknown then D given by 
Eq. ( 15) is also unknown. Instead of using $ to evaluate Eq. 
( 15)) in this work it is proposed to use the estimate q(t) 
given by Eq. ( 13), such that Eq. ( 15) can be expressed as: 

D(h) = s (16) 
f 
&~) ($(td +k(S(t,) -sef)) 

/I 

Consider the particular case where the parameters A and c are 
chosen as - 1 and 0, respectively. Then, using the definition 
for y (y = S - 3) and recalling that yd = jd = 0, the observer 
( 13) can be written as: 

(F(t!tk-+,) =$(tJ +S?t,> -&I =.k) --DC&-S(&)) 

(17) 

If discrete-time measurements of S are available for time 
intervals r, the time derivative of S can be approximated by 
backwards finite differences, and Eq. ( 15) takes the follow- 
ing form: 

S(t!J -S(L,) 
Rtk+L) = 7 -DC&--S(h)) (18) 
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which is equal to the discrete-time estimator reported in Ref. 
131. 

Aguilar et al. [ 31 proved that the closed-loop behavior of 
the systems ( 1 )-( 2) with the uncertainty estimator given by 
Eq. ( 18), is asymptotically stable as r+ 0. Considering a 
sufficiently small control parameter r/k, the closed-Ioop tra- 
jectories can be driven to an arbitrary small neighborhood 
from the reference value Fef. 

5. Effect of the noise on the me~url~ments 

The performance of the closed-loop system with a control 
law given by Eq. ( 16) and the uncertainty term estimated by 
Eq. ( 18) is satisfactory when the measurements are noise 
free. However, when the measurements are noisy, the uncer- 
tainty estimate e(t) is affected by a term which becomes un- 
bounded as r+ 0. 

Let S( tJ be an additive noise with zero mean value and 
uniform distribution, which is associated with the substrate 
measurements at the time t,+ Then, t:?e measured substrate 
concentration at the time t,, is given in the following form: 

sytz&> =S(t,) +6(Q) (191 

where S”( tk) is the measured substrate concentration value 
used in the evaluation of the controllers ( 13) and ( 16). Eqs. 
( 18) and (19) yield 

(20) 

where A 6( tk) = 6( tJ - 6( t,- , ) . From the discussion on Sec- 
tion 5, the uncertainty estimate becomes closer to the real 
one when sampling interval becomes smaller, however, this 
implies that the last term in Eq. (20) becomes unbounded 
despite the value of A&t,). That is, (AS(t,)/r)+” as 
7+0. 

Considering the noise measurement effect on the uncer- 
tainty estimator given by Eq. ( 13), the following expression 
is obtained: 

(21) 

Notice that the uncertainty estimate contains an additional 
term which involves the noise measurements effect, however, 
its effect can be reduced by taking the value of h sufficiently 
small. In this way, the estimate giver by Eq. (2 1) resembles 
the structure showed in Eq, ( 13)) with analogous conver- 
gence properties. 

6. Numerical results 
0. 

0 IO 20 30 40 50 

Time [hr] 

In order to illustrate the dynamic: behavior of the close- Fig. 1. Closed-loop behavior of the substrate concentration for different 

loop system. numerical simulations of a continuous bioreac- values of the observer parameter A. 

tor were implemented according to the model described in 
Section 2. The parameter values for the controllers ( 13) and 
(18) were chosen as: k= 1.0 hh’, A= -0.1, -0.05, 0.001; 
c = 0.5 h- ‘. Initial conditions for the controller were chosen 
asS(t,) =S(Oj, @(to> =2.3 g I-’ hh’. From open loop sim- 
ulations, it was found that the lower and upper bounds on 
$KfJ are: lCImln =Ogl-‘h-‘,~,,,,,,=lO.Ogl-‘h-l. 

The prescribed setpoint is Sef( t} = 1 S38 g l- ‘, which cor- 
responds to an unstable open-loop equilibrium point. The 
initial conditions for the system are: S(0) = 10.0 g I-‘, 
X( 0) = 2.0 g 1- ’ . A sustained perturbation on the concentra- 
tion of substrate feed flow was taken according to the follow- 
ing expression 

$=$+A sin(or) (22) 

where$=35.0gl11.A=5.0gl-‘, andw=0.2h-‘. 
In order to evaluate the influence of noisy measurements 

on the controller performance and the reduction of its effects 
through the observer parameter h, numerical simulation with 
the conditions described above was implemented for different 
values of h. The noise in the substrate concentration meas- 
urement 6( rk) was taken as a random number in [ - 0. 1 , 0.1 I 
(about 10% measurement error). 

Fig. 1 presents the transient behavior of S( t) . Observe that 
S(t) is maintained around the setpoint despite perturbations, 
uncertainties and noisy measurements; that is, the controllers 
( 13) and ( 18) provide practical regulation. According to the 
results in Section 5, the peaking phenomena on the substrate 
concentration become less severe as the parameter X becomes 
smaller. It is interesting to note that despite the parameter h 
acts like a low-pass (noise) filter, the dynamical response of 
the substrate concentration remains almost the same, even h 
was reduced one order in magnitude. 

Fig. 2 shows the transient behavior of the real and the 
estimated uncertainties. It can be observed that the estimate 
of the uncertain term is maintained around the real value. The 

I  - I  1 I  

:: 1 
,: I\ 2% 
:/a/ I> 3: . 
: : : !  ‘/ . 

, . 

i++---- 

1 \, ” 
! :  
i 

-I.= -0.001 

i p,= -0.005 

. . . . ~... h= -0.0, 
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-------- Estimated ( h= -0.01) 
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__ Estimated ( h= -0.001) 

20 30 50 

Time [hr] 
Fig. 2. Comparison of the dynamical behavior of the real and estimate 
uncertainties for different values of the observer parameter A. 

Time [hr] 
Fig. 3. Control input behavior for different values of the observer parameter 

A. 

size of the neighborhood was made smaller by varying the 
values of A. 

Fig. 3 presents the dynamical behavior csf the control input 
D. Observe that the peaking effect induced my the noisy meas- 
urements on the control input is not too :severe despite the 
size of the noise. Again, the peaking phenomena on the sub- 
strate concentration become less severe as the parameter A 
becomes smaller. 

In this work, a control strategy for substrate concentration 
regulation for a continuous bioreactor in which the kinetic 
terms related with the specific growth rate, the yield coeffi- 
cient and the biomass concentration are unknown was devel- 
oped. The controller uses the on-line estimated values of 
kinetic terms, having practical stability even in the presence 
of uncertainties in the process model and additive noise on 
the substrate concentration measurements. Such estimates are 
obtained from a numerical observer. Numerical simulations 
of a continuous bioreactor were carried out and showed that 
the performance of the resulting controller is satisfactory 
despite uncertainties and noisy measurements. 

To compare with a nonadaptive controller which does not A limitation of our method is that uncertainty estimation 
estimate uncertainty, we have implemenied a PI-controller in closed-loop can only be realized when the uncertainty 
tuned with internal model control (IMC) methodologies appears additively and matched (i.e., the uncertain term is in 
[ 121 based on a nominal linearized model. Fig. 4 presents the same row of the control input). In some cases, matched 
numerical simulations with the PI-controller and the proposed uncertainty appears naturally, as in the case of bioreactors 
controller. Although the PI-controller converges faster than studied in this work. In other cases, such structure of uncer- 
the controller based on uncertainty estimation, the PI one is tainty can be obtained via changes of coordinates. 

(4 - 
D [hi’] 

-- Proposed Controller 

PI Controller 
0.0 I I I , I , , , 

1.8,, , a , a , a , s 
I (b) 

1 

Time [hr] 
Fig. 4. Comparison of the dynamical behavior driven by a PI-controller and 
the proposed in this work. 

more sensible to measurements noise. To reduce the adverse 
effects of measurements noise, an alternative is to detune the 
controller. However, there is no systematic procedures to 
detune a PI-controller in order to reduce adverse noise effects. 
The controller proposed in this work introduces a detuning 
parameter A (relaxing parameter), for which the rule is 
reduce it up to obtain ‘good’ close-loop performance. 

7. Concluding remarks 
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